Comparison of Acid-hydrolyzed and TEMPO-oxidized Nanocellulose for Reinforcing Alginate Fibers

نویسندگان

  • Xiao-Jun Shen
  • Pan-Li Huang
  • Jing-Huan Chen
  • Yu-Ying Wu
  • Qiu-Yun Liu
  • Run-Cang Sun
چکیده

Two samples of acid-hydrolyzed nanocellulose and two samples of TEMPO-oxidized nanocellulose were separately prepared from cotton liner pulp and microcrystalline cellulose, and dispersed in water. Sodium alginate that was extracted from brown seaweed was dissolved in the nanocellulose suspensions and wet spun in a calcium chloride bath to form four kinds of alginate/nanocellulose composite fibers. The structures and properties of the obtained nanocellulose and composite fibers were investigated and compared. The results showed that all of the nanocellulose samples exhibited a needle shape with slightly different sizes. The incorporation of nanocellulose increased the opacity of the spinning dopes but improved the mechanical properties of the alginate fibers. The optimum addition amount for all of the nanocelluloses was 5% (based on the weight of sodium alginate). The TEMPO-oxidized nanocellulose produced from cotton liner pulp had the greatest influence on the strength of the fibers. All the composite fibers had an irregular cross-section with dense and uniform structure, which indicated the good compatibility between nanocellulose and alginate. In addition, the introduction of nanocellulose slightly improved the thermal stability of the alginate fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approaching a Low-Cost Production of Cellulose Nanofibers for Papermaking Applications

The use of cellulose nanofibers (CNF) as an additive in papermaking is an attractive alternative to improve paper’s strength. However, the costs of CNF production need to be competitive compared to other approaches aimed at reducing mechanical beating. Five different types of CNFs were prepared following different pretreatments: TEMPO-mediated oxidation at basic and neutral conditions, soft aci...

متن کامل

Comparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse

Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...

متن کامل

Comparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse

Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...

متن کامل

Comparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse

Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...

متن کامل

3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications

Nanocellulose has a variety of advantages, which make the material most suitable for use in biomedical devices such as wound dressings. The material is strong, allows for production of transparent films, provides a moist wound healing environment, and can form elastic gels with bioresponsive characteristics. In this study, we explore the application of nanocellulose as a bioink for modifying fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017